|
大数据时代的崛起,推动了人脸识别的热潮。从2014年逐步开始应用到目前“刷脸”时代的来临。人脸识别的应用领域逐步扩散。本文将带您了解人脸识别兴起领域的应用方案,探寻人脸识别技术的未来。
9 t) W( ]# |# i5 c
! Z$ Z7 P- _" h
8 P: [0 T l$ Q1 S$ m. A一、人脸识别的行业现状
6 b; t+ {4 Z6 h7 f8 [3 a1 I1 Y. Q' y: N4 o+ @" l/ ?$ t" K
随着人工智能行业的产业化发展的井喷,人脸识别行业热点频频,市场规模逐步扩大,目前估算我国人脸识别市场规模约占全球市场的10%左右。2010-2016年,我国人脸识别市场规模逐年增长,年均复合增长率达27%。2016年,我国人脸识别行业市场规模约为17.25亿元,同比增长27.97%,到2021年人脸识别市场规模将达到53亿元左右。) t! Z# ^0 b7 K- F2 a
: d& D. x& V) M; V$ _8 d同时国内人脸识别行业中企业数量不多,且各自应用不同细分领域,竞争压力小,人脸识别的热潮还将继续。下面分享一些应用案例帮助大家进一步了解人脸识别。4 K7 ]4 D/ A0 R8 V2 I( K; D
6 W' }4 c' B, V" G二、人脸识别的行业应用% V4 T& H, |( j2 u
B$ G' q: f' q! S" v$ u' O: z
虽然市面上的人脸识别解决方案越来越多,但系统框架基本没有变化。
2 e4 t- ?% g( P% _1 l; m3 y5 \! K' d
1、 高铁与地铁的人证一致检测应用案例+ ^% L/ f3 B+ r
0 t$ ~) i4 Q( ]: X“刷脸”进站已经不是个新鲜事了,目前各地的铁路已经逐步开通人脸识别验票系统,以减少人工成本,同时提高安全性,减少进站时间。
# L' N+ y2 ~% R2 ~
+ ^1 i) D( |( I9 B. ]人脸识别技术采用人脸检测、跟踪、人脸识别、二代身份证验证及多功能检测等技术,对人员进行实时人脸识别分析和报警,以刷身份证件加上人脸验证模式,实现人员智能身份验证,保证“人”“证”的一致性确认。首先,将现场采集的人脸特征与身份证件人脸特征进行1:1比对,确认人、证都验证通过才会开启通道。8 [* p3 `4 P! m! r
7 ?8 `2 q% D/ E' ~8 c( H在人员使用设备时,如果出现操作不当,系统同时会根据算法判断,进行相应的语音和视频提示,从而提高通道人员出入操作的易用性。同时在高铁的人脸识别系统中会进行防尾随跟踪功能的设计,通过红外检测技术,实时监控通道,判断是否有人员尾随跟进,保证非验证人员通过。2 z( _9 P6 d! M0 }6 P
: a" q# G2 l X" F2 H8 b4 f0 m' W) u' ~; Z$ |
2、人脸识别考勤机* c/ {+ M3 ?1 R. B# O
, S5 V# a: [/ O& F' w. h1 c4 ?人脸识别考勤机是一种新型的存储类考勤机,事先只需采集员工的面像,并建立档案,当员工上下班站在人脸识别考勤机的识别区域内,考勤机上就会快速的记录考勤状况并保存记录。 y$ O, D6 l3 F$ o" t: j# D& l
- t" C$ O, i4 t @2 ^. a/ v2 _
人脸识别考勤机是采用人脸识别技术(融合了计算机图像处理技术与生物统计学原理于一体),利用计算机图像处理技术从视频中提取人像特征点,利用生物统计学的原理进行分析并建立人脸特征模板。当已登记的人员从人脸识别机前走过,它会有语音提示“你好”或者人员的姓名表示考勤已成功。1 i; c# b# ?" f& j5 o6 U/ F' k, k
4 ^+ [) h. R, y9 [! L5 l& Z而且,具备图像更新功能,若将正采取的图像作为第一人脸,存储的为第二人脸,如果第一人脸图像与第二人脸图像相一致,人脸识别考勤机将自动储存第一人脸图像来更新该第二人脸图像。该法可保持用户脸部图像的更新,降低了脸部外形改变对识别的影响,增加了识别的准确率。 |
|