|
大数据时代的崛起,推动了人脸识别的热潮。从2014年逐步开始应用到目前“刷脸”时代的来临。人脸识别的应用领域逐步扩散。本文将带您了解人脸识别兴起领域的应用方案,探寻人脸识别技术的未来。2 [' t- a- o% x: C1 Z. y! M
( ^9 y- ]; ]/ @- t
- p5 k; `4 g. y% E, N
一、人脸识别的行业现状7 t. G Q/ N$ n6 U) J/ ]
& b1 e; C- o/ M3 c& h" w
随着人工智能行业的产业化发展的井喷,人脸识别行业热点频频,市场规模逐步扩大,目前估算我国人脸识别市场规模约占全球市场的10%左右。2010-2016年,我国人脸识别市场规模逐年增长,年均复合增长率达27%。2016年,我国人脸识别行业市场规模约为17.25亿元,同比增长27.97%,到2021年人脸识别市场规模将达到53亿元左右。 g( t2 y( r; c V" D! R
, d N7 Z, Y) L& X& H; k同时国内人脸识别行业中企业数量不多,且各自应用不同细分领域,竞争压力小,人脸识别的热潮还将继续。下面分享一些应用案例帮助大家进一步了解人脸识别。
0 e) {3 U1 e% L- `! Y$ k- ]0 Y) K, m2 F& J, S% t2 X8 y; C
二、人脸识别的行业应用
, k2 ^4 E* U: N% Q- X9 O4 @& F2 O& K
虽然市面上的人脸识别解决方案越来越多,但系统框架基本没有变化。
+ L% ~: s9 d' u$ g% v" D, G( a: s/ |* f* I9 ~6 p; c6 I& w( ~
1、 高铁与地铁的人证一致检测应用案例8 [) `4 \! v8 }2 {
6 D3 k& x1 }" f) I5 W: J
“刷脸”进站已经不是个新鲜事了,目前各地的铁路已经逐步开通人脸识别验票系统,以减少人工成本,同时提高安全性,减少进站时间。+ v7 _! [, M9 T8 k, O- c& F! N
! _7 S/ E7 X' y$ j1 U9 I. U. f人脸识别技术采用人脸检测、跟踪、人脸识别、二代身份证验证及多功能检测等技术,对人员进行实时人脸识别分析和报警,以刷身份证件加上人脸验证模式,实现人员智能身份验证,保证“人”“证”的一致性确认。首先,将现场采集的人脸特征与身份证件人脸特征进行1:1比对,确认人、证都验证通过才会开启通道。
5 `& s9 B- ?8 g
/ M" ^& n" _! r+ k) N在人员使用设备时,如果出现操作不当,系统同时会根据算法判断,进行相应的语音和视频提示,从而提高通道人员出入操作的易用性。同时在高铁的人脸识别系统中会进行防尾随跟踪功能的设计,通过红外检测技术,实时监控通道,判断是否有人员尾随跟进,保证非验证人员通过。
; U& a' O+ R9 K+ I+ r# ~7 s1 H' Y. t& S
2 G+ i- @" L9 o6 X4 B9 ]9 z( f2、人脸识别考勤机
, k: v. [& N$ Y2 f) g
$ @5 x8 `0 U; P5 \ b4 D& p人脸识别考勤机是一种新型的存储类考勤机,事先只需采集员工的面像,并建立档案,当员工上下班站在人脸识别考勤机的识别区域内,考勤机上就会快速的记录考勤状况并保存记录。
* H. t% A# w/ t! N
# L# f- `$ P6 } Y- z) H7 F" Z K9 s人脸识别考勤机是采用人脸识别技术(融合了计算机图像处理技术与生物统计学原理于一体),利用计算机图像处理技术从视频中提取人像特征点,利用生物统计学的原理进行分析并建立人脸特征模板。当已登记的人员从人脸识别机前走过,它会有语音提示“你好”或者人员的姓名表示考勤已成功。" l/ L' Q$ l' {
% o# ?! E. M9 ~* V& s' `6 y而且,具备图像更新功能,若将正采取的图像作为第一人脸,存储的为第二人脸,如果第一人脸图像与第二人脸图像相一致,人脸识别考勤机将自动储存第一人脸图像来更新该第二人脸图像。该法可保持用户脸部图像的更新,降低了脸部外形改变对识别的影响,增加了识别的准确率。 |
|