|
|
% ]" r. d" W+ M
6 o- \! O3 J2 Y, z: A 一、视觉对位系统不抓点是什么原因?
( E( f: ?/ y5 d" _9 R3 A% \( _9 _ 主要是Mark点,好的软件可以支持MARK自定义选取。贴合的精度与Mark的大小也有关系,所以Mark越小,一致性越好,对位精度就越高!
% Z) Z% O) i: u二、视觉定位系统的组成# x9 Y+ E2 y$ e8 }% M
机器人视觉定位系统构成如图 1 所示,在关节型机器人末端安装喷涂工具、单个摄像机,使工件能完全出现在摄像机的图像中。系统包括摄像机系统和控制系统:- ]6 m& c/ H ~ P& a( K, W
; D8 s, Y3 O( y. e/ a- S (1)摄像机系统:由单个摄像机和计算机(包括图像采集卡)组成,负责视觉图像的采集和机器视觉算法;
Z1 r5 ^3 `8 b (2)控制系统:由计算机和控制箱组成,用来控制机器人末端的实际位置;经 CCD 摄像机对工作区进行拍摄,计算机通过本文使用的图像识别方法,提取跟踪特征,进行数据识别和计算,通过逆运动学求解得到机器人各关节位置误差值,最后控制高精度的末端执行机构,调整机器人的位姿。
+ f* r9 A k I. E 喷涂机器人视觉定位系统组成
8 }; {7 |0 I( ]0 @ b三、视觉定位系统工作原理
+ d0 u# l: ]4 U$ a4 n" I& a 视觉定位系统的工作原理
# p' {; `: V2 B7 C3 I; z+ Q 使用 CCD 摄像机和1394 系列采集卡,将视频信号输入计算机,并对其快速处理。首先选取被跟踪物体的局部图像,该步骤相当于离线学习的过程,在图像中建立坐标系以及训练系统寻找跟踪物。学习结束后,图像卡不停地采集图像,提取跟踪特征,进行数据识别和计算,通过逆运动学求解得到机器人各关节位置给定值,最后控制高精度的末端执行机构,调整机器人的位姿。工作流程如图2 所示。
7 ~6 I( X7 `1 n- ]( n0 Z7 t4 l# R6 b; n; n
四、视觉定位系统软件流程图! w s! E$ v; ?+ D9 v5 Q) ]
基于区域的匹配9 m$ U# O0 r5 X7 c/ Q. R0 H
本文采用的就是基于区域的相关匹配方法。它是把一幅图像中的某一点的灰度领域作为模板,在另一幅图像中搜索具有相同(或相似)灰度值分布的对应点领域,从而实现两幅图像的匹配。在基于区域相关的算法中,要匹配的元素是固定尺寸的图像窗口,相似准则是两幅图像中窗口间的相关性度量。当搜索区域中的元素使相似性准则最大化时,则认为元素是匹配的。
6 W+ h* y6 {- T 定义P (i, j) P 是模板图像中一点,取以P (i, j) P 为中心的某一邻域作为相关窗口K ,大小为(2w +1),假设K 在原始图中,水平方向平移Δu ,垂直方向平移Δu 后,K 所覆盖下的那块搜索区域叫做子图S k ,若K 和S k 相同,则它们的差为零,否则不为零。
# c; z, Z; O9 q3 o) c) ~ 四元数致力于运动控制、图像与视觉传感等工业自动化技术的研发和应用,产品广泛应用于印刷设备、模切设备、贴合设备、多轴数控设备、机械手、电子加工和检测设备、激光加工设备、抛光机械生产自动化等工业控制领域。% W6 ~" \) }' {6 `+ @* b& I' p7 A
* h+ O' ?& @' S, h) o; D6 }7 X3 T, _3 p7 {$ z O/ J6 m% I
|
本帖子中包含更多资源
您需要 登录 才可以下载或查看,没有帐号?注册
x
|