|
前段时间,OPPO意外上了热搜。
3 {5 R: O' |: h8 Q, C3 a7 Q 因为智能AI语音助手“小欧”的语音唤醒、解锁功能,用户花了5000元买了一部OPPO的手机。这事没让用户感到兴奋,反而有点恐慌。
7 W6 ]& H5 j( c 根据指示,在录入声音后,应该只有声音的主人能够语音唤醒、解锁,而现在,在用户已经提前录入声音的前提下,他的朋友竟然也通过语音成功唤醒小欧,并解锁手机。
% A0 z' f8 i* R9 z: v, ?; C* i/ u 这其中究竟是哪一步出了问题?
) x" v6 r- ^7 P 答案是,语音识别。0 R5 V( ^, l+ u% `4 ^' e* K$ k% R, {
说得更准确一点,是手机系统的声纹识别不够准确。8 o" P' m) Y1 E( O9 v& F* [
声纹识别很“低调”,但掩盖不住市场利好
% ^" ]. | R- [ 就像这个世界上没有任何两片树叶的纹理是一样的,即使是双胞胎,他们的舌、牙齿、喉头、肺、鼻腔在尺寸和形态等方面多多少少都会有些差异,即便是声音听起来相似,但声纹图谱总归是不同的。
6 h0 n1 ]( s0 M4 o J8 ` 具体说来,声纹识别是生物识别手段的其中一种,跟它属于同一家族的还有指纹识别、人脸识别、虹膜识别等等。在现实生活中,识别技术通常都被用来作为交互或是安全认证的一种手段,声纹识别亦不能免俗。
5 b+ i; E" u6 E+ N. n4 k$ Q5 O) M 目前,声纹识别技术最大的市场在于安防和金融。其中,最为经典、刺激的当属刑侦。最佳例子来自2017年的热播剧《人民的名义》,针对陈海发生车祸一事,反贪局局长侯亮平与京州公安局局长赵东来在全场进行探讨分析,提到陈海在车祸前共接到两个举报电话,京州公安局将两个电话交由不同技术部门进行了两次鉴定,最终得出结论,两通电话举报人的声音并非蔡成功一人。; _7 S) b0 Q9 _3 r+ ?
如何知道声音不是同一个人的?这其中所使用的技术就是声纹识别。更进一步讲,这是1对1的声纹识别技术,通过将电话中的声纹与数据库中蔡成功的声纹特征进行1对1比对。0 V+ Z- g& ]- `* z* X( h
而在金融领域,声纹识别技术也被用于用户身份确认等方面,譬如银行系统会要求用户登录时先行说出一段指定文字,从而进行声纹数据的比对,以确认用户是否为本人。可以说,在安防/金融等领域,声纹识别有着先天的落地场景和利好前景。
: C, x$ i; ^- B9 o( M8 g7 c( F! ^" R2 m7 L 安防/金融等应用场景之外,声纹识别也逐步地在智能硬件、智能家居等产品或场景内实现落地。. l+ c! }& p, R, r' ?3 f5 `
以智能家居场景内的智能音箱为例。最初智能音箱并不具备声纹识别的功能,这也就意味着任何人都可以唤醒它并对其下指令。而当有多人同时发声时,智能音箱就会发生“指令混乱”的问题。如果任何人都可以通过智能音箱进行全场景控制,那么无疑为不法分子提供了作案便利。因此,出于安全性、指令接收准确性、个性化等因素,声纹识别技术也渐渐在智能家居、智能硬件等场景中实现渗透。
2 l8 f2 x6 Q- o6 Y% m 目前,在声纹识别技术的应用方面,除了接入安防、金融等行业,诸如长虹等硬件厂商也研发并推出了具备声纹识别功能的智能电视、智能手机等等。8 P0 ?' q& a6 d& M5 e
从近几年的情形可以看出,相比于指纹识别、人脸识别等生物识别技术,声纹识别是“低调”的,但市场需求是的确存在的,且市场热度也有上升趋势。
3 k! I* s Q1 K. {+ D6 A3 e4 _ 相比其他家族成员,声纹识别的成长过程有着许多“拦路虎”" N* t" c# i& V4 L4 k
此前,智研咨询发布《2018-2024年中国声纹识别技术行业市场运营态势及发展前景预测报告》,内容中指出,2017年声纹识别技术的全球收入为1.32亿美元,而这一数值在几年将增至1.59,增速达到20.5%,预计到2021年,声纹识别技术的全球收入将达到2.64亿美元。仅从这一数值来看,声纹识别的市场预期还是不小的。
+ a. F1 p( M4 l; z' D 但另一方面,这一市场预期又着实有点不够看头。国际权威调研机构Gen Market Insights发布了《全球人脸识别设备市场研究报告2018》,报告称,2017年全球人脸识别设备市场价值为10.7亿美元,到2025年底将达到71.7亿美元,在2018年至2025年期间将以26.8%的速度增长。& `; ]6 |2 e$ L4 C# z
一边是个位数,一边是十位数,这中间的差距之大十分明显。4 \* i/ F% |! ~ T; t( r3 B; Z
此外,我们再看另外一组对比:
2 v; |- M" C' j; K 从易用性、准确率、成本、用户接受度等角度出发,对各项生物识别技术做对比。我们可以直观看到,综合评判上,相比于指纹识别、掌型识别、人脸识别、虹膜识别等生物识别技术,声纹识别在各方面都占据优势。! P% {' n3 C, e# Q8 t6 M6 t, I5 v
那么,我们就疑惑了:市场存在需求,易用性、准确率、成本、用户接受度等方面又比其他生物识别技术更有优势,缘何声纹识别技术的市场占有率远远落后于人脸识别等技术?1 t( i- q$ W' L" |1 C! x" j+ u1 [
问题就出在数据的采集和覆盖范围上。6 ]6 c1 I: n. \7 H" Q7 s
在本文开始,我们就提到纵然是双胞胎,他们的声纹特征也是有所差异的,不过更为准确地讲,声纹是一种“相对唯一”的生物特征。! d$ `3 `8 M. D5 @. z5 v' b3 A5 f: y
在实际应用中,声纹识别受影响的因素比较多,首先注册模型上,受限于环境、身体状态等因素,一个人的声音会发生不用的变化;其次在应用中,也会受注册环境跟验证环境不一致造成的失配问题,致使声纹不能匹配;最后,声纹也会随着年龄的变化而变化。另外,虽然声纹可以实现非接触的,但是在入侵方面也增加了更多的风险,比如录音、合成器合成等。( ?* C, s d9 w. @
其中针对某些问题,人工智能技术能够给予一定的帮助,比如环境对声纹收集和比对的影响。一般情况下,在语料覆盖率足够完整的前提下,将之用于模型的搭建和训练,在最终实际应用场景中,即使面对嘈杂的环境,系统在提取声纹特征时便会将这些因素“去掉”,从而确保声纹特征的精准。6 N! a( Z+ s+ [
什么是语料?是指一个人的声纹数据。
6 p# }& o! E7 y6 I! x- o% O1 X& l7 } 不过,用极限元创始人兼CEO温正棋的话来说,面对环境失配问题,现在更多的是通过语料的覆盖率来解决。在其看来,技术的成熟度极大程度上也是依赖语料的积累度。
7 @" W: y' h: I! _- B0 o 语料积累的全面与完整,这涉及到背后的声纹数据库是否全面覆盖了不用环境、不同状态等场景下的声纹特征。对于一般企业而言,这是一个极具难度的工作。1 H; }5 V8 M0 w9 ?+ ~
语料的完整与否影响了模型训练的精确度,也影响了声纹识别技术在实验室之外的商业化落地,尤其是面对1对N的“说话人辨认”的情况,相对于1对1的“说话人确认”,“说话人辨认”会要求系统通过声纹识别技术在多个人中找出一个人,这对系统的语料完整度、声纹特征提取的准确度等多个方面提出了要求。4 H- L$ B1 W4 m, I% K
未来,声纹识别当不了“独行侠”- }1 M5 p' D o0 Y ^0 r+ G2 ?$ D
现如今,以智能手机为例,各大手机生产商、应用开发商更乐意采用人脸识别技术来用于认证解锁、认证支付。而在机场、高铁等场地,人脸识别检票等设备也应较为常见。$ r" O0 i7 R& V2 h! O5 u6 M2 Z4 s' A4 b
在这些场景中,人脸识别技术被作为安全认证技术独立使用。那么,同样是安全认证技术,声纹识别有没有机会来当一回“独行侠”?5 b6 I4 E# P8 \6 g; H5 A
严格说来,声纹识别当“独行侠”的机会很少,微乎其微。只有在相对局限的场景中,譬如相对外来因素影响较小的家居环境等等,用户只需要提前录入自己多种状态的声纹并实时更新,系统将能够独立提供服务。
* }1 B u/ Q- m9 r$ s$ L 至于其他较为复杂的环境,现在的声纹识别很多都是与语音识别和人脸识别等结合,譬如用户读出一段指定文字,以登录银行账户等,安全指数更高。也因此,从大趋势来讲,声纹识别当不了“独行侠”。2 g& U, U* w4 `
' c2 L: \9 N/ I4 q9 @
|
|